EGER LAVINA KFT. ::: Személyautó és teherautó alkatrész kis- és nagykereskedés
Eger, Rákóczi út 129. Tel.: +36 36 427-890   Fax: +36 36 412-560

Ólom akkumulátor, amit tudni érdemes!


Kedves látogató, az alább leírtakban, megpróbáltuk összegyűjteni, hogy mit is érdemes tudni az ólomakkumulátorok működéséről és karbantartás igényéről anélkül, hogy sok felesleges műszaki adattal halmoznánk el.

Az ólom akkumulátorok kereskedelmi forgalmazása több, mint 100 éves múltra tekint vissza. Ha valaki az akkumulátorok ismeretének és gondozásának alapjait elsajátítja, akkor jóval kevesebb akku problémára számíthat a jövőben, az akkumulátorának teljesítmény leadási képessége, megbízhatósága és várható élettartama növekedni fog.

Napjainkban a jármű akkumulátorokkal szemben támasztott teljesítmény-igény nagyon megnövekedett. A fedélzeti elektronikának megbízható áramforrásra van szüksége, az akkumulátor nem kielégítő állapota költséges alkatrészek meghibásodásához vezethet. Az átlagos akkumulátor élettartam rövidebb lett, mivel az akkuk felé támasztott energia-igény megnövekedett.

Néhány alapfogalom

Az ólomakkumulátor lemezekből, ólomból, ólom-oxidból, továbbá 35%-os kénsav és 65%-os desztillált víz oldatból áll (ill. több egyéb elemből, amelyek pl. a savsűrűséget befolyásolják). Ezt az oldatot elektrolitnak nevezzük, ez indítja be a kémia reakciót, amely elektronokat hoz létre. Amikor az akkumulátort savsűrűség-mérővel tesztelik, gyakorlatilag az elektrolitban jelen lévő kénsav mennyiségét mérik. Amikor a mért érték túl alacsony, az azt jelenti, hogy a kémiai folyamat, amely elektronokat állít elő, alacsony intenzitású. Szóval hová lett a szulfát az elektrolitból? Az akkumulátor-lemezeken pihen, s ha újratölti az akkumulátorát, a szulfát visszatér az elektrolitba.

  1. Biztonság
  2. Akkumulátor típusok, ciklikus és indító akkumulátorok
  3. Savas, zselés és felitatott üvegszálas rendszerek
  4. CCA, CA, AH és RC; mik ezek?
  5. Akkumulátor karbantartás
  6. Akku tesztelés
  7. Új akkumulátor kiválasztása és vásárlása
  8. Akkumulátor élettartam és teljesítmény
  9. Az akkumulátor töltése



Biztonság

Amikor valaki akkumulátorral kerül kapcsolatba, gondolnia kell a biztonságra is. Az akkumulátor töltése folyamán termelt hidrogén gáz fokozottan robbanásveszélyes. Sokszor megtörtént már, hogy az akkumulátor mellett dohányzó embert a felrobbant akkumulátor kénsavval permetezte be, amely komoly sérülésekhez vezetett. Járműveken végzett elektromos munkák előtt mindenképpen célszerű az akkumulátor földkábelét (általában negatív) kikötni.

 


Akkumulátor típusok, ciklikus és indító akkumulátorok

Gyakorlatilag kétféle akkumulátor típust különböztethetünk meg; az indító (járművekben) és a ciklikus (hajókon, napelemes rendszerekben, szünetmentes tápegységekben, stb.) akkumulátor tipust. Az indító akkumulátort arra tervezték, hogy rövid idejű, de nagy áram leadására legyen képes (pl. önindító). A ciklikus akkumulátor kevésbé képes rövididejű nagy áramok leadására, viszont sokkal jobban bírja a huzamosabb kisütést/feltöltést. A ciklikus akkumlátorok lemezei vastagabbak és az akku képes túlélni többszöri akku mélykisütést is. Az indító akkumulátorokat nem lehet ciklikus akkumulátoroknak szánt feladatokra alkalmazni.

 


Savas, zselés és felitatott üvegszálas rendszerek

Savas, Zselés és Felitatott Üvegszálas (Absorbed Glass Mat - AGM) rendszerű akkumulátorok különböző fajtái az ólom akkumulátoroknak. A savas akkumulátor két alapvető kivitelben készül; gondozásmentes és a gondozást igénylő kivitelben. Mindkét típus elektrolit folyadékkal van feltöltve. A zselés és az AGM akkumulátorok speciális akkumulátorok, amelyek általában kétszer annyiba kerülnek, mint egy savas akkumulátor. Viszont nagyon jó a tároló képességük és nem szulfátosodnak olyan gyorsan, mint a hagyományos savas ólomakkumulátorok. Zselés és bizonyos AGM akkumulátorok speciális töltést igényelnek. A teljesség igénye nélkül az alábbi felhasználásokhoz javasolt AGM akkumulátorok alkalmazása: hajózás, lakókocsik, lakóautók, audio  technika, vízi sportok, szünetmentes áramellátás, napelemes vagy szélgenerátoros rendszerek, stb. Amennyiben az akkumulátorról nem használunk napi gyakorisággal fogyasztót, ez is korai akku meghibásodáshoz vezethet. Zselés akkumulátorok még kaphatók de az AGM akkumulátorok lassan kiszorítják őket a legtöbb felhasználási területről. Az AGM akkumulátorok körül van egy kis fogalomzavar a köztudatban, mivel az akkumulátorgyártók és forgalmazók különböző nevekkel illetik őket; pl. zárt biztonsági szelepes (sealed regulated valve), száraz vagy szárazcellás (dry cell), kiömlés biztos (non-spillable) és zárt ólom akkumulátorok. Egy KIEGÉSZÍTŐ MEGJEGYZÉS a zselés akkumulátorokról: nagyon gyakori, hogy sokan ezt a kifejezést használják, amikor egy zárt rendszerű, karbantartásmentes akkumulátorról beszélnek.

AGM (Absorbed Glass Matt) felitatott üvegszálas konstrukció az akkumulátorlemezek között egy bór-szilikát párnát jelent, amely egyéb hasznos tulajdonsága mellett megakadályozza a lemezek közötti vagy alatti cellazárlatot is. Az AGM konstrukciók további előnye, hogy akkor sem szivárog ki belőlük eletrolit, ha az akkumulátor háza megsérül, széttörik. A jó minőségű AGM akkumulátorok akkor fogják élettartamuk maximumát nyújtani, ha azokat újratöltik, mielőtt a töltöttségi szintjük 50% alá esik. Az AGM akkumulátoroknak ugyancsak alacsony az önkisülése (havi 1-3%), ezért jobban bírják a töltés nélküli tárolást, mint a hagyományos társaik.

Zselés: A zselés akkumulátor belsőleg annyiban hasonlít az AGM akkumulátorokhoz, hogy az elektrolit itt is meg van kötve. Az AGM akkuban az elektrolit továbbra is folyékony kénsav, csak fel van itatva, míg a zselés akkuban szilika-gél segítségével az elektrolitot elzselésítik. A zselés akkumulátor cella a legérzékenyebb valamennyi típus közül a túltöltésre, amely korai akkumulátor tönkremenetelhez vezet. Zselés akkumulátorok igazi felhasználási területe, ahol az akkumulátor kisütése a 100%-os mértéket is eléri. Nem megfelelő akkumulátor töltő használata esetén az akkumulátor korai halála szinte elkerülhetetlen.

CCA, CA, AH és RC - mik ezek?
Nos, ezek azok a szabványos értékek, amelyeket minden akkumulátor-gyártó alkalmaz egy adott akkumulátor típus paramétereinek megadásában.
Hidegindító áram (Cold cranking amps vagy CCA vagy EN) az az áramerősség érték, amelyet az akkumulátor problémamentesen le tud adni 30 másodpercen keresztül -18C hőmérsékleten úgy, hogy a feszültsége nem esik 7.2V alá. Ezért a magas CCA érték különösen hideg időben bizonyul hasznosnak.
Indítóáram (cranking amp vagy CA) az az érték, amelyet hasonló körülmények között mérnek 0C hőmérsékleten.
Amperóra (AH) az akkumulátor kapacitását (energia befogadó-képességét) jelenti. 1 Amperóra egyenlő 1A áramerősség 1 órán keresztüli leadásával.

Az akkumulátor karbantartása
Az akkumulátor karbantartása fontos feladat. Az akkumulátor külső műanyag burkolatát célszerű időnként szódabikarbonát és víz elegyével áttörölni (néhány evőkanálnyi fél liter vízbe). A kábel csatlakozásoknak tisztának és jól meghúzottnak kell lennie. A karbantartást igénylő akkumulátorban ellenőrizni kell az elektrolit-szintet, nyári, forró időszakban gyakrabban. Az eletrolit-szint fedje el a lemezek felső részét kb. 1-1,5 cm-rel. Ha után kell tölteni, mindig használjon desztillált vizet (tömény kénsav vagy csapvíz használata tilos). Sokan nem tudják, hogy az akkumulátorból kiszabaduló gázok a kábel és a saru fémrészeire kikondenzálva korróziót okoznak. Ezért célszerű ezeket a fémrészeket szilikon zsírral vagy savmentes zsírral bevonni.

Az akkumulátor tesztelése
Az akkumulátor tesztelése többféle módon is történhet. A két legismertebb módszer a elektrolit savsűrűségének a mérése, illetve az akkumulátor feszültségének a mérése. Savsűrűség mérésére szükség van egy hőmérséklet-kompenzált savsűrűség-mérőre; akkufeszültséget pedig egy digitális multiméterrel tudunk mérni.
Először is teljesen fel kell tölteni az akkumulátort. Utána hagyjuk az akkumulátort több órán (akár 12 órán) keresztül pihenni. Az ún. "felületi töltést" el kell távolítani a teszt megkezdése előtt. A fényszórók bekapcsolása is megfelelő erre a célra kb. 3 percig üzemeltessünk .
Töltöttség
Savsűrűség (kg/l)
Akkufeszültség (V) 
 100%  1.26512.7
 *75%  1.225  12.4
 50% 1.190 12.2
 25%  1.155 12.0 
 Mélykisütött 1.120  11.9

Az akkumulátor szulfátosodása akkor kezdődik, amikor a savsűrűség 1,225 alá esik vagy az akkufeszültség 12,4V alá. A szulfátosodás megkeményíti az akkumulátor lemezeket és csökkenti az akku áramfelvevő/áramleadó képességét, kapacitását, a folyamat az akkumulátor tönkremenetelével ér végét.

A kisütéses tesztelés egy újabb lehetőség az akkumulátor állapotának felmérésére. A kisütéses tesztelés alatt az akkumulátorból egy adott idő alatt nagyobb áramot veszünk fel, mintha pl. egy önindítót működtetnénk. Ez általában a fele a hidegindító áram (CCA) értékének. Ez azt jelenti, hogy egy 500A-es hidegindító áramú akkumulátort 250A-rel lehet terhelni 15 másodpercen keresztül. Kisütéses tesztelést csak teljesen feltöltött akkumulátoron végezzünk.

A tesztelés eredménye az alábbiak szerint kell hogy alakuljon:

A cellánként mért savsűrűség értékek nem térhetnek el egymástól több, mint 0,05 értékkel.

A digitális multiméterrel mért akku kapocsfeszültség értéke a fenti táblázatnak megfelelő kell legyen. A zárt AGM vagy zselés akkumulátorok gyakran magasabb, 12,8-12,9V-os értéket adnak (100% töltöttség). Ha 10,5V körüli értéket mér, akkor az cellazárlatra utal.
Ha a tesztelendő akkumulátor teljesen zárt karbantartásmentes típus, akkor a sav sűrűségmérés kiesik a lehetőségek közül, marad az üresjárati kapocsfeszültség-mérés vagy a kisütéses tesztelés. A legtöbb teljesen zárt akkumulátorba beépítenek egy ún. varázsszemet, amely az egyik cella savsűrűségéről ad vizuális tájékoztatást. Ez sajnos a maradék 5 cella állapotáról nem nyújt információt.

Új akkumulátor kiválasztása, vásárlása.
Célszerű a lehetőségekhez képest a legnagyobb amperóra kapacitású akkumulátort megvásárolni. Természetesen mindezt a fizikai befoglaló méretek és az akku csatlakozás kiépítésének szem előtt tartásával. Amennyiben az akkumulátort a szokásosnál erősebb környezeti hatásoknak (nagy meleg, nagy hideg) fogja kitenni vagy a rendszeres karbantartás és pontos töltés nem megoldható, akkor célszerű elgondolkozni zselés vagy AGM ciklikus akkumulátor beszerzésén.

Akku élettartam és teljesítmény
Az átlagos akkumulátor élettartam rövidebb lett, ahogy az energia-igények megnövekedtek. Két kifejezést nagyon sokszor hallani: "az akkumulátorom nem veszi fel a töltést", ill. "az akkumulátorom nem tartja a töltést". Kb. az akkumulátorok 30%-a éri meg a 3 éves vagy az a fölötti kort. Az akkumulátorok meghibásodásának a 80%-a az elszulfátosodásra vezethető vissza. Szulfátosodás akkor következik be, amikor a szulfát molekulák az elektrolitból (kénsav) kiválnak és az ólomlemezekre rakódnak. Hamarosan a lemezeken oly mértékű lesz a szulfát-lerakódás, hogy az akkumulátor tönkremegy, nem vesz fel töltést és nem képes teljesítményt leadni. A szulfát lerakódásnak több oka is van, az alábbiakban felsoroltunk néhányat.
  • Az akkumulátor túl sokat pihen két újratöltés között, pl. akár 24 óra nagyon meleg időben vagy több nap hideg időben már megindíthatja a fokozott szulfátosodást.
  • Az akkumulátort úgy tárolják, hogy időszakonként nincs újratöltve.
  • Az indítóakkumulátorok túlzott mértékű kisütése (mélykisütése). Emlékezzen rá, hogy ezek az akkumulátorok nem bírják a mélykisütést.
  • Az akkumulátor nem teljes mértékű feltöltése, pl. 90%-os újratöltés mellett megkezdődik a szulfátosodás annak a 10%-os nem reaktivált anyagnak a segítségével, amit a befejezetlen töltési ciklus hagyott fenn.
  • 38C fölötti hőmérséklet megnöveli az akku önkisülését. A hőmérséklet növekedésével növekszik az önkisülés mértéke is. Ha egy vadonatúj, teljesen feltöltött akkumulátort a nap 24 órájában 38C fokos hőmérsékleten hagyunk 30 napon keresztül, nagy valószínűséggel nem lesz képes beindítani a motort.
  • Alacsony elektrolit-szint. A levegőnek kitett ólomlemezeken azonnal megindul a szulfát képződés.
  • Nem megfelelő töltőfeszültség vagy töltési karakterisztika. A legtöbb, barkácsáruházban kapható olcsó akkumulátor töltő több kárt tud csinálni, mint hasznot. lásd az akkutöltésre vonatkozó fejezetet.
  • A hideg is megviseli az akkumulátort. Hidegben az akkumulátor kapacitása alacsonyabb, mint normál hőfokon. Egy teljesen kisütött akkumulátor akár be is tud fagyni, amikor tartósan 0 fok alá süllyed a hőmérséklet.
Fantom fogyasztók akkor is energiát vesznek fel az akkumulátorból, amikor az indítókulcs ki van húzva. A legtöbb járműben van beépített óra, cd-lejátszó, fedélzeti computer, immobilizer, riasztórendszer, etc. Ezeknek a fogyasztóknak a legtöbbje folyamatosan üzemel, akkor is, amikor a motor nem jár. Ha gyakran van problémája idejekorán tönkrement akkumulátorokkal, akkor az egyik lehetséges ok a fantom fogyasztók túlzott mértékű fogyasztása a ritkább újratöltéssel szemben. A folyamatosan alultöltött akkumulátor élettartama drasztikusan csökken.

Az akkumulátor töltése
Legfontosabb, hogy ne felejtse el az akkumulátorból kivett energiát mielőbb vissza is tölteni. Ha nem így tesz, akkor az elszulfátosodás beindul, amely a kapacitás és élettartam csökkenéséhez vezet. A gépjárművek generátora egyben akkumulátortöltő is és általában jól végzi a feladatát egészen addig, amíg az akkumulátort nem sütjük ki túlságosan. A generátor a mélykisütött akkumulátort rendszerint túltölti, ami megint csak nem tesz jót az akkunak. Általában egy mélykisütött indítóakkumulátort kb. tízszer tud a generátor újratölteni. Az akkumulátorok szeretik, ha megfelelő karakterisztika szerint töltik fel őket, különösen mélykisütött állapotukból. Ezt az optimális töltési karakterisztikát 3 lépcsős töltési karakterisztikának nevezzük. Ezt a karakterisztikát csak speciális processzorvezérelt akkumulátortöltők képesek nyújtani, ilyen töltőket egyáltalán nem vagy csak ritkán látni a barkácsáruházak polcain. Az első lépcső a teljes töltés (bulk charging), ahol az akkumulátor a kapacitásának kb. 80%-át visszanyeri a töltő maximális áramú és feszültségű töltése mellett. Amikor az akkumulátor feszültsége eléri a 14,4V-ot, elkezdődik a második lépcső, a kímélő töltés (absorption charge). Ilyenkor a töltőfeszültség állandó 14,4V-os értéken marad és a töltőáram folyamatosan csökken egészen addig, amíg az akkumulátor töltöttsége el nem éri a 98% körüli értéket. Itt elkezdődik a harmadik lépcső, a csepptöltés (float charging), amely kb. 13,4V-os töltőfeszültséggel és alacsony (többnyire 1 amper körüli) töltőárammal kímélve tölti az akkumulátort. Ezzel az utolsó lépcsővel az akkumulátor töltöttsége eléri vagy megközelíti a 100%-os értéket. A csepptöltés ideje alatt az akkumulátor nem melegszik és a töltöttségi szintje közel 100%-os marad hosszú idejű pihenés alatt is.

 

Szerző: Panelectron Bt.            

Copyright 2008 Eger Lavina